
Lessons Learnt from the Adoption
of Formal Model-based Development

Alessio Ferrari1 Alessandro Fantechi1,2

Stefania Gnesi1

1ISTI-CNR, Pisa, Italy
2DSI, University of Florence, Florence, Italy

April 3, 2012

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 1 / 20

Overview
Domain

Railway signalling
Standard-regulated framework

Technologies
Formal model-based development & Code generation

Tools
Simulink/Stateflow toolsuite

Goals
Identification of a safe-subset of the modelling language
Evidence of the behavioural conformance between the generated
code and the modelled specification
Integration of the modelling and code generation technologies
within the process that is recommended by the regulations

Tuning of the approach across 3 Projects

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 2 / 20

Formal model-based design
Formal methods

Ten Commandments of Formal Methods...ten years later
(Bowen, J.P., Hinchey, M.G., IEEE Computer, 1995-2006)

Formal methods are still perceived as experimental technologies
Model-based design

Model-based design is born later, but gained ground much faster
Graphical simulation is more intuitive than formal verification
Simulink/Stateflow is a de-facto standard

Challenges
How to ensure that the generated code is compliant with the
modelled application?
How to integrate model-based practices with traditional certified
processes?
Formal model-based design

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 3 / 20

Problem Statement

History
Medium-size company operating in safety-related railway
signalling systems development
Introduction of Simulink/Stateflow as design tools
4 years research activity in collaboration with academia to adopt
code generation

Problem Statement
Define and implement a methodology for the adoption
of the code generation technology from formal models
by a railway signalling company

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 4 / 20

Goals

Goal 1 - Modelling language restriction
Safety-critical code shall conform to specific quality standards
Companies use coding guidelines in order to avoid usage of
improper constructs
Identification of a safe subset of the modelling language

Goal 2 - Generated code correctness
Proven-in-use translator required
Compliance between generated code and model behaviour

Goal 3 - Process integration
Introduction of new technologies in an established process
requires adjustments to the process structure
Process according to normative prescriptions

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 5 / 20

Projects

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 6 / 20

Automatic Train Protection (ATP) Systems

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 7 / 20

Project 1 History

Prototyping
A Stateflow model was designed in collaboration with the
customer in order to define and assess the system requirements
Assessment of the potentials of modelling for prototype definition
and requirements agreement
Succesful deployment of the system

Code Generation Experiments
Experiments started when the system was already operational
Definition of a first set of modelling guidelines
Proper code synthesis of the single model units was achieved
through Stateflow Coder
No V&V process still defined
Project 1 remained an hand-crafted system

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 8 / 20

Project 2 History

Towards a V&V process
Ten times larger than Project 1 in terms of features
Internal guidelines integrated with MAAB (Matlab Automotive
Advisory Board) recommendations
Static anlaysis at model level for guidelines verification
Functional unit-level verification

I Model-based testing
I Abstract interpretation (Polyspace)

Evolution

Strict timing of the project
Model-based testing and guidelines verification only partially
employed
Ad-hoc solution for code verification

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 9 / 20

Project 3 History

A formal development process
ATP for metro signalling system
Project 1 < Project 3 < Project 2
Hierarchical derivation approach with UML support
Real-time Workshop Embedded Coder adopted
Functional unit-level verification

I Translation validation (back-to-back testing)
I Abstract interpretation (Polyspace)

Experiments with formal verification
Simulink Design Verifier
Experiments at module level
95% of the requirements can be verified with the tool to achieve a
cost reduction of 50% to 60% in terms of man-hours

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 10 / 20

Goals

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 11 / 20

Projects vs Goals

Year Project Technologies (Full or Partial Adoption) Goal

2007-2008 Project 1 Modelling guidelines (25) 1

Code generation (Stateflow Coder R2007b)

2008-2010 Project 2

Modelling guidelines + MAAB (43) 1

Code generation (Stateflow Coder R2007b) 2

Guidelines verification 3
Model-based testing

Abstract interpretation (Polyspace 7.0)

2009-2011 Project 3

Modelling guidelines + MAAB (43) 1

Semantics restrictions 2
UML + hierarchical derivation 3
Code generation (RTW Embedded Coder R2010a)

Translation Validation
Abstract interpretation (Polyspace 8.0)

Formal Verification (Simulink Design Verifier R2010a)

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 12 / 20

Goal 1 - Modelling Language Restriction

Project 1 - Identify a proper subset of the language
I Analysis of the violations of the quality standard issued by the code

generated from the original model
I Definition of sub-models and evaluation of the translation of single

graphical constructs
I Definition of a preliminary set of guidelines

Project 2 - A more general set of guidelines
I Previous guidelines could lack of generality since they were derived

from a specific model
I A comparison with the experience of other safety-critical domains

was needed −→ MAAB
I Guidelines oriented also to define well-structured models

Project 3 - Enable formal analysis and verification
I Reduction of the Simulink/Stateflow language to a semantically

unambiguous set
I Inspired by the translation of Simulink/Stateflow into Lustre
I The models produced are independent from the simulation engine

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 13 / 20

Goal 2 - Generated Code Correctness

Project 2 - Preliminary definition of a verification approach
Project 3 - Operational implementation of the approach

I Translation validation
F Model/code back-to-back execution of unit tests
F Comparison of the structural coverage obtained at model and at code

level
I Abstract interpretation

F Verification of runtime errors
F The tools implementing abstract interpretation work on a conservative

and sound approximation of the variable values in terms of intervals
F Finding errors in this larger approximation domain does not imply that

the bug also holds in the program
F Problem of false positive cases
F First step: large over-approximation set, in order to discover

systematic runtime errors and identify classes of possible false
positives

F Second step: constrained abstract domain, derived from the first
analysis, and the number of uncertain failure states to be manually
reviewed is drastically reduced

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 14 / 20

Goal 3 - Process Integration

SW Requirements
 Phase

SW Architecture
Phase

SW Module
 Design Phase

SW Validation
Phase

SW Integration
Phase

SW Module
Test Phase

Code Phase

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 15 / 20

Goal 3 - Process Integration

SW Requirements
 Phase

Model Architecture
Phase

Model Module
 Design Phase

Model Module
Test Phase

Model
Integration
Phase

Model Validation
Phase

SW Validation
Phase

SW Integration
Phase

SW Module
Test Phase

Code Phase

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 15 / 20

Goal 3 - Process Integration

SW Requirements
 Phase

Model Architecture
Phase

Model Module
 Design Phase

Model Module
Test Phase

Model
Integration

Phase

Model Validation
Phase

SW Validation
Phase

SW Integration
Phase

SW Module
Test Phase

Code Phase

Model System Test
Definition

Requirements
Definition

UML Architecture

Stateflow Design

Model Unit Test
Definition

Simulink Architecture

Unit Requirements
Definition

SW System Test
Definition

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 15 / 20

Goal 3 - Process Integration

SW Requirements
 Phase

Model Architecture
Phase

Model Module
 Design Phase

Model Module
Test Phase

Model
Integration

Phase

Model Validation
Phase

SW Validation
Phase

SW Integration
Phase

SW Module
Test Phase

Code Phase

Model Unit Testing

Model Unit Testing
Validation

SW Unit Test
Generation

Model Integration

Model System Testing

Model System Testing
Validation

Model System Test
Definition

Requirements
Definition

UML Architecture

Stateflow Design

Model Unit Test
Definition

Model Static Analysis

Simulink Architecture

Unit Requirements
Definition

SW System Test
Definition

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 15 / 20

Goal 3 - Process Integration

SW Requirements
 Phase

Model Architecture
Phase

Model Module
 Design Phase

Model Module
Test Phase

Model
Integration
Phase

Model Validation
Phase

SW Validation
Phase

SW Integration
Phase

SW Module
Test Phase

Code Phase

Code Generation
(RTW Embedded

Coder)

Model Unit Testing

Model Unit Testing
Validation

SW Unit Test
Generation

Model Integration

Model System Testing

Model System Testing
Validation

Model System Test
Definition

Requirements
Definition

UML Architecture

Stateflow Design

Model Unit Test
Definition

Model Static Analysis

Simulink Architecture

Unit Requirements
Definition

SW System Test
Definition

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 15 / 20

Goal 3 - Process Integration

SW Requirements
 Phase

Model Architecture
Phase

Model Module
 Design Phase

Model Module
Test Phase

Model
Integration

Phase

Model Validation
Phase

SW Validation
Phase

SW Integration
Phase

SW Module
Test Phase

Code Phase

SW Unit Testing

Code Generation
(RTW Embedded

Coder)

Model Unit Testing

Model Unit Testing
Validation

SW Unit Test
Generation

Model Integration

Model System Testing

Model System Testing
Validation

SW System Testing
(HIL)

SW System Testing
Validation

SW Integration

Model System Test
Definition

Requirements
Definition

UML Architecture

Stateflow Design

Model Unit Test
Definition

Model Static Analysis

Simulink Architecture

Unit Requirements
Definition

SW Abstract
Interpretation
(Polyspace)

SW System Test
Definition

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 15 / 20

What We Learnt

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 16 / 20

What We Learnt

Abstraction
I Models can be manipulated better than code
I Definition of test scenarios at module level without disrupting model

structure
Expressiveness

I Graphical models are closer to the natural language requirements
I Unambiguous mean to exchange or pass artefacts among

developers

Cohesion & Decoupling
I Interfaces among functionalities are based solely on data
I Control-flow is simplified since there is no cross-call among

different modules

Uniformity
I Generated code has a repetitive structure, which facilitates the

automation of the verification activities
I One could look at the generated code as if it would be the software

always written by the same programmer

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 17 / 20

What We Learnt

Traceability
I Software modules are directly traceable with the corresponding

blocks of the modelled specification
I Navigable links between the single code statements and the

requirements

Control
I Greater control over the components
I Software with less bugs already before the verification activities

Verification Cost
I When passing from traditional code unit testing based on structural

coverage objectives, to testing based on functional objectives aided
with abstract interpretation, it was possible to reduce the verification
cost of about 70%

I Recent experiments with formal verification have shown that this
cost can be further reduced by 50-66%

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 18 / 20

What We Learnt

Performance
I The complexity of the generated code is higher
I Optimization are not allowed for safety-critical software
I More powerful hardware platforms are required

Manual Test Definition
I Bottleneck of the verification process
I 60-70% of the overall unit-level verification cost
I Formal verification can address this issue

Knowledge Transfer Process
I Research assistant focused on the new technology
I Development team putting into practice the technology
I Balance between independence and participation

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 19 / 20

Conclusion

Introducing the formal design and code generation technologies
within the development process of a railway signalling
manufacturer
Radical changes in the verification process
Formal model-based design has opened the door to model-based
testing, has facilitated the adoption of abstract interpretation, and
has allowed performing the first successful experiences with
formal verification
Four years and three projects to be defined and consolidated
Incremental tuning of the process also thanks to the flexibility of
the toolsuite
Research management model has been crucial
What if UML-centered tools are going to be used?

A. Ferrari, et al. (ISTI-CNR/DSI-UNIFI) Adoption of FM-based Development 20 / 20

